Mở rộng lớp các số Mersenne
نویسندگان
چکیده
منابع مشابه
Fuzzy clustering using linguistic-valued exponent
TÓM TẮT Bài báo này được thực hiện nhằm mục đích nghiên cứu tìm hiểu thuật toán phân cụm FCM và các ý tưởng cải tiến đã có; tiến hành phân tích và phát hiện những đặc điểm phù hợp trong thuật toán FCM có thể áp dụng được đại số gia tử một lý thuyết sử dụng đại số trong việc biểu diễn giá trị của các biến ngôn ngữ. Từ đó, đề xuất một hướng cải tiến mới, đó là sử dụng lý thuyết đại số gia tử vào ...
متن کاملEnhancing Privacy in Distributed Data Clustering
The protocol of privacy-preserving clustering with distributed EM mixture modeling was proposed. However, it is not completely secure in the situation that something more than just the model parameters are revealed. Specially, when the dataset is horizontally partitioned into just two parts, this reveals extra information. The aim of this work is firstly to develop a more general protocol which...
متن کاملGaussian Mersenne and Eisenstein Mersenne primes
The Biquadratic Reciprocity Law is used to produce a deterministic primality test for Gaussian Mersenne norms which is analogous to the Lucas–Lehmer test for Mersenne numbers. It is shown that the proposed test could not have been obtained from the Quadratic Reciprocity Law and Proth’s Theorem. Other properties of Gaussian Mersenne norms that contribute to the search for large primes are given....
متن کاملGeneralised Mersenne Numbers Revisited
Generalised Mersenne Numbers (GMNs) were defined by Solinas in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use in elliptic curve cryptography. Their form is such that modular reduction is extremely efficient, thus making them an attractive choice for modular multiplication implementation. However, the issue of residue multiplication efficiency seems to have been overlooked....
متن کاملMersenne and Fermat Numbers
The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127 —1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science and Cybernetics
سال: 2016
ISSN: 1813-9663,1813-9663
DOI: 10.15625/1813-9663/10/3/8196